Molecular Orbital Study of \mathbf{H}_{2} and CH_{4} Activation on Small Metal Clusters. 2. $\mathbf{P d}_{3}$ and $\mathbf{P t}_{3}$

Qiang Cui, Djamaladdin G. Musaev,* and Keiji Morokuma*
Cherry L. Emerson Center for Scientific Computations and Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received: May 18, 1998

Abstract

The electronic structure of Pd_{3} and Pt_{3} clusters and the detailed reaction mechanism of activation of H_{2} and CH_{4} on these clusters have been studied with a density functional method. Full geometry optimization has been carried out and led to the reaction mechanisms that are dramatically different from those of a previous work where only limited potential energy scans were carried out. In the $\mathrm{Pd}_{3}+\mathrm{H}_{2}$ system, Pd_{3}, like Pd_{2}, activates H_{2} without barrier. For the activation of the $\mathrm{C}-\mathrm{H}$ bond in CH_{4} with Pd_{3}, although the final products are found to be similar in energy compared to the case of Pd_{2}, the activation barriers on Pd_{3} are much higher than those on Pd_{2}. This difference has been explained in terms of the large repulsion from the $\mathrm{s}^{1} \mathrm{~d}^{9}$ configurations of Pd atoms in Pd_{3}, whereas Pd atoms in Pd_{2} adopt mainly the less repulsive d^{10} configuration. In the case of $\mathrm{Pt}_{3}+\mathrm{H}_{2} / \mathrm{CH}_{4}$, the reactions basically follow the same pattern as in the Pt_{2} systems. Namely $\mathrm{H}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ are broken at first on a single Pt atom, and then one H atom migrates to other Pt atom(s). No activation barrier has been found on either the singlet or the triplet state for $\mathrm{H}-\mathrm{H}$ activation, and a smaller activation barrier height compared to the Pt_{2} case has been obtained for the $\mathrm{C}-\mathrm{H}$ activation. Results from the current series of studies are consistent with the recent experimental observations on the reactivities of unsupported Pd_{n} and Pt_{n}.

I. Introduction

Understanding the electronic and dynamic properties of clusters has become one of the most active areas in modern physical chemistry, and tremendous advances have been achieved in both theoretical and experimental studies. ${ }^{1,2}$ Among all kinds of clusters, those consisting of transition metal elements are of particular interest due to their importance in heterogeneous catalysis. The size dependence of reactivities of metal clusters has become a most fascinating and intriguing issue in modern cluster chemistry ${ }^{3}$ and has attracted much attention in both experimental ${ }^{4-6}$ and theoretical fields. ${ }^{7-11}$ For a more detailed introduction, we refer the reader to our previous paper. ${ }^{11}$ Particularly, in the recent experimental work of Cox et al. ${ }^{12,13}$ large oscillations in measured rate constants of CH_{4} and H_{2} activation by unsupported Pt and Pd clusters $(n=6-24)$ as functions of the cluster size have been observed. For Pt clusters, the dimer through pentamer were found to be the most reactive, while larger clusters are much less reactive. For Pd clusters, Pd_{8} and Pd_{10} are the most reactive, while Pd_{3} and Pd_{9} activate H_{2} and CH_{4} more slowly.

To unravel the reason behind the observed variation of reactivities as a function of cluster size, ${ }^{12,13}$ we have chosen to study the detailed mechanism of H_{2} and CH_{4} activation on small Pd_{n} and $\mathrm{Pt}_{n}(n=1-5)$ clusters, and in the previous and the current paper we report our results for dimers $(n=2)$ and trimers $(n=3)$, respectively. Works on tetramers and pentamers are currently in progress.

In section II, we describe the method employed in the current study. In section III, we at first briefly recall the conclusions obtained in our previous work on metal dimers. ${ }^{11}$ Next we consider the electronic structure of Pd_{3} and Pt_{3}. Then we shall present results on the reactivities of these metal trimers for the
activation of H_{2} and CH_{4} and make comments on the size dependence of their reactivities. Finally we draw some conclusions in section IV.

II. Computational Methods

The method employed here is the same as those in our previous work. ${ }^{11}$ The fully optimized geometries and vibrational frequencies of clusters, intermediates, and transition states involved in the activation processes have been obtained at the B3LYP ${ }^{14}$ level with valence double-zeta quality basis functions (BSI) on both the metal ${ }^{15}$ and $\mathrm{C} / \mathrm{H},{ }^{16}$ together with the small core relativistic effective core potential (RECP) of Hay and Wadt for the metal atoms. ${ }^{15}$ Single-point energetics has been calculated also at the B3LYP level with two larger basis sets. Basis set II (BSII) is obtained from BSI by adding f polarization functions to the metal ${ }^{17}$ and d and p polarization functions to C and H , respectively. ${ }^{16}$ In basis set III (BSIII), the RECP of Dolg et al. ${ }^{18}$ and the associated triple-zeta basis sets have been used for the metal, and Dunning's correlation consistent (polarized) valence triple-zeta basis set cc-VTZ ${ }^{19}$ has been used for C and H , while f functions on C and d functions on H have been excluded. The calculations for the singlet states are spinrestricted computations, while these for the high spin states are unrestricted. The DFT calculations have been performed with our own modified version of Gaussian94. ${ }^{20}$ Normal mode analysis has been performed at the B3LYP/I level. The unscaled zero-point corrections (ZPC) calculated at the B3LYP/I level are included in our final energetics obtained at the B3LYP/III level.

III. Results and Discussions

The information on low lying electronic states of the trimers and the critical structures involved in the activation of H_{2} and

TABLE 1: Geometries and Energetics of $\mathbf{M}_{3}(\mathbf{M}=\mathbf{P d}, \mathbf{P t})$ at the B3LYP Level ${ }^{a}$

state	$\mathrm{M}=\mathrm{Pt}$					$\mathrm{M}=\mathrm{Pd}$				
	$R_{\text {MM }}$ (A)	\angle_{MMM} (deg)	B3LYP/I	B3LYP/II	B3LYP/III	$\begin{gathered} R_{\mathrm{MM}} \\ (\AA) \end{gathered}$	\angle_{MMM} (deg)	B3LYP/I	B3LYP/II	B3LYP/III
${ }^{1} \mathrm{~A}_{1}$	2.521	60.0	-120.5/-120.5	-124.1/-124.1	-119.7/-119.7	2.516	60.0	-53.0	-54.9	-51.5
${ }^{3} \mathrm{~A}_{1}$	2.592	58.6	-115.6	-117.8	-115.5	2.611	57.8	-57.0	-58.3	-55.0
${ }^{3} \mathrm{~B}_{1}$	2.541	60.4	-120.4	-122.8	-119.5	2.611	57.2	-57.8	-59.3	-56.2
${ }^{3} \mathrm{~B}_{2}$	2.557	63.2	-109.2	-111.3	-108.6	2.549	65.6	-59.1/-59.1	-60.3/-60.3	-56.3/-56.3
${ }^{3} \mathrm{~A}_{2}$	2.541	61.5	-118.2	-120.8	-117.6	2.573	59.8	-56.0	-57.5	-54.5
${ }^{5} \mathrm{~A}_{1}$	2.571	59.3	-101.4	-103.7	-99.7					
${ }^{5} \mathrm{~B}_{1}$	2.656	56.0	-94.7	-96.7	-93.2					
${ }^{5} \mathrm{~B}_{2}$	2.554	65.0	-96.7	-98.5	-95.5					

${ }^{a}$ Total energies for the ${ }^{1} \mathrm{~A}_{1}$ electronic state M_{3} are (in hartrees) -357.427 37, -357.435 03, -358.101 03 for $\mathrm{M}=\mathrm{Pt}$ and $-380.25474,-380.20782$, -383.74117 for $\mathrm{M}=\mathrm{Pd}$, at the B3LYP/I, B3LYP/II, and B3LYP/III levels, respectively. For all structures, the energetics is given in $\mathrm{kcal} / \mathrm{mol}$, relative to three infinitely separated ground-state atoms. Numbers given after slash include zero-point correction (ZPC) calculated at the B3LYP/I level.

TABLE 2: Energetics of Intermediates and Transition States of $\mathbf{H}_{2} / \mathbf{C H}_{4}$ Activation on $\mathbf{M}_{3}(\mathbf{M}=\mathbf{P d}, \mathrm{Pt})$ at the B3LYP Level ${ }^{a}$

compound	state ${ }^{\text {b }}$	$\mathrm{X}=\mathrm{H}$			$\mathrm{X}=\mathrm{CH}_{3}$		
		B3LYP/I	B3LYP/II	B3LYP/III	B3LYP/I	B3LYP/II	B3LYP/III
X-H		-1.17442	-1.17743	-1.18000	-40.51447	-40.52704	-40.53729
$\mathrm{Pd}_{3} \mathbf{X}$ TSal	$\left({ }^{1} \mathrm{~A}^{\prime}\right)$				17.1/17.8	14.6/15.3	17.3/18.0
$\mathrm{Pd}_{3}{ }_{-} \mathrm{X}^{-} \mathbf{T S a} 2$	$\left({ }^{1} \mathrm{~A}\right)$				16.7/14.7	14.4/12.0	16.6/14.6
$\mathbf{P d}_{3}{ }^{-} \mathbf{X}_{-}^{-} \mathbf{T S i}$	${ }^{1} \mathrm{~A}$	-31.7/-29.9	-34.8/-33.0	-33.4/-31.6			
cis- $\mathrm{Pd}_{3}{ }^{-} \mathrm{X}_{2} \mathrm{Com} 1$	$\left({ }^{1} \mathrm{~A}^{\prime}\right)$				-7.0/-8.2	-10.2/-11.4	-8.7/-9.9
trans $\mathrm{Pa}_{3} \overline{\mathbf{X}}_{-1} \mathbf{C o m 1}$	${ }^{1} \mathrm{~A}^{\prime}\left({ }^{3} \mathrm{~A}^{\prime}\right)$	-32.6/-33.7	-35.5/-36.6	-34.3/-35.4	-7.4/-8.6	-10.8/-12.0	9.1/-10.2
$\mathbf{P d}_{3} \mathbf{X}^{\text {P Com }} \mathbf{1}^{\prime}$	$\left({ }^{1} \mathrm{~A}^{\prime}\right)$				-0.6/-3.2	-2.3/-4.9	-2.0/-4.6
$\mathrm{Pd}_{3} \mathbf{X}^{\text {- }}$ Com2	${ }^{1} \mathrm{~A}^{\prime}\left({ }^{1} \mathrm{~A}^{\prime}\right)$	-32.1/-33.1	-35.2/-36.2	-34.0/-35.0	-0.1/-1.0	-2.8/-3.7	-1.4/-2.3
$\mathrm{Pd}_{3} \mathbf{X}_{\mathbf{-}} \mathbf{C o m} 3$	${ }^{1} \mathrm{~A}^{\prime}$	-31.4/-32.6	-33.4/-34.6	-32.4/-33.6			
$\mathrm{Pt}_{3} \mathbf{X} \mathbf{X}_{-} \mathrm{Mol}$	${ }^{1} \mathrm{~A}^{\prime}$	-14.9/-13.8	-19.6/-18.5	-21.2/-20.1			
	${ }^{3} \mathrm{~A}^{\prime}$	-13.2/-12.3	-22.2/-21.3	-20.4/-19.5			
	${ }^{3} \mathrm{~A}$ "	-18.1/-17.1	-22.6/-21.6	-24.8/-23.8			
$\mathrm{Pt}_{3} \mathbf{X}^{\mathbf{X}} \mathbf{T S a}$	${ }^{1} \mathrm{~A}^{\prime}\left({ }^{1} \mathrm{~A}\right)$	-13.9/-13.1	-19.5/-18.7	-21.6/-20.8	7.0/6.2	2.7/1.9	1.9/1.1
	${ }^{3} \mathrm{~A}^{\prime}\left({ }^{3} \mathrm{~A}\right)$	-15.1/-14.8	-22.5/-22.2	-20.7/-20.4	8.0/6.4	4.5/2.9	-1.2/0.4
	${ }^{3} \mathrm{~A}$ " ${ }^{\text {a }}$	-18.0/18.3	-22.9/-23.2	-25.0/-25.3			
$\mathbf{P t}_{3} \mathbf{X}_{-} \mathbf{C o m 1}$	${ }^{1} \mathrm{~A}^{\prime}\left({ }^{1} \mathrm{~A}\right)$	-18.4/-17-5	-21.8/-20.9	-23.7/-22.8	-0.8/-2.1	-3.8/-5 1	-4.3/-5.6
	${ }^{3} \mathrm{~A}^{\prime}\left({ }^{3} \mathrm{~A}\right)$	-19.5/-18.3	-21.9/-20.7	-24.0/-22.8	-2.1/-3.1	-8.0/-9.0	-8.5/-9.5
	${ }^{3} \mathrm{~A}$ " ${ }^{\text {a }}$	-24.3/-23.7	-27.1/-26.5	-28.4/-27.8			
$\mathrm{Pt}_{3} \mathrm{X}_{-}$TSi1	${ }^{1} \mathrm{~A}\left({ }^{1} \mathrm{~A}\right)$	-9.4/-8.7	-12.0/-11.3	-15.5/-14.8	6.7/5.4	4.1/2.8	1.8/0.5
	${ }^{3} \mathrm{~A}\left({ }^{3} \mathrm{~A}\right)$	-13.7/-13.0		-20.8/-20.1	3.5/3.1		-1.7/-2.1
$\mathrm{Pt}_{3} \mathbf{X}_{-} \mathbf{C o m} 2$	${ }^{1} \mathrm{~A}\left({ }^{1} \mathrm{~A}\right)$	-13.3/-12.5	-16.2/-15.4	-18.3/-17.5	2.6/0.7	-0.2/-2.2	-1.8/-3.7
	${ }^{3} \mathrm{~A}\left({ }^{3} \mathrm{~A}\right)$	-19.9/-18.1		-24.2/-22.4	-1.1/-1.8		-5.7/-6.4
Pt_{3} - X _ TSi2	${ }^{1} \mathrm{~A}\left({ }^{1} \mathrm{~A}\right)$	-11.8/-11.1	-14.4/-13.7	-17.1/-16.4	4.3/2.5	1.7/-0.1	-0.5/-2.3
	${ }^{3} \mathrm{~A}\left({ }^{3} \mathrm{~A}\right)$	-18.7/-17.6		-21.9/-20.8	0.2/-1.3		-3.4/-4.9
$\mathrm{Pt}_{3} \mathbf{X}_{-} \mathbf{C o m} 3$	${ }^{1} \mathrm{~A}\left({ }^{1} \mathrm{~A}\right)$	-21.9/-20.8	0.2/-1.3	-21.9/-20.8	0.2/-1.3	-21.9/-20.8	0.2/-1.3
	${ }^{3} \mathrm{~A}\left({ }^{3} \mathrm{~A}\right)$	-23.6/-22.7	-26.0/-25.1	-27.4/-26.5	-8.8/-7.9	-11.3/-10.4	-11.7/-10.8
$\mathrm{Pt}_{3} \mathbf{X}_{-}$TSi3	${ }^{1} \mathrm{~A}\left({ }^{1} \mathrm{~A}\right)$	-15.4/14.6	-18.2/-17.4	-22.2/-21.4	-0.5/-1.1	-3.4/-4.0	-6.5/-7.1
	${ }^{3} \mathrm{~A}\left({ }^{3} \mathrm{~A}\right)$	-20.4/-19.2	-22.6/-21.4	-25.3/-25.1	-5.4/-6.0	-7.7/-8.3	-9.3/-9.9
trans- $\mathrm{Pt}_{3} \mathrm{X}_{-} \mathrm{Com4}$	${ }^{1} \mathrm{~A}^{\prime}\left({ }^{(1} \mathrm{A}^{\prime}\right)$	-16.5/-15.7	-19.3/-18.6	-23.71-22.9	-2.4/-3.1	-5.4/-6.1	-8.5/-9.2
	$\left.{ }^{3} \mathrm{~A}^{\prime \prime}\right)\left({ }^{(} \mathrm{A}^{\prime \prime}\right)$	-21.6/-21.1	-24.0/-23.5	-27.6/-27.1	-5.5/-6.6	-7.9/-9.0	-10.5/-11.6
cis- $\mathrm{Pt}_{3} \mathrm{X}_{-} \mathbf{C o m 4}$	${ }^{1} \mathrm{~A}^{\prime}$	-16.0/-15.1	-19.0/-18.1	-23.6/-22.7			
	${ }^{3} \mathrm{~A}$ "	-21.5/-20.8	-23.8/-22.1	-25.2/-24.5			
$\mathrm{Pt}_{3} \mathbf{X} \mathbf{X} \mathbf{T S}($ cis-trans)	${ }^{1} \mathrm{~A}$	-14.3/-13.5	-16.7/-15.9	-20.7/-19.9			
$\mathrm{Pt}_{3}{ }^{-} \mathbf{X}_{-}^{-} \mathbf{T S i 4}$	${ }^{1} \mathrm{~A}$	-13.5/-12.4	-16.1/-14.9	-20.9/-19.7			
cis $-\mathrm{P}_{\mathbf{3}}^{\mathbf{+}}{ }^{-} \mathrm{X}$ _ Com 5	${ }^{1} \mathrm{~A}^{\prime}$	-15.1/-14.7	-17.8/-17.4	-23.9/-23.5			
	${ }^{3} \mathrm{~A}$ "	7.3/8.2					
trans- $\mathrm{Pt}_{3} \mathrm{X}_{-} \mathrm{Com5}$	${ }_{3}^{1} \mathrm{~A}$	-12.8/-11.7	-15.4/-14.3	-21.7/-20.6			
	${ }^{3} \mathrm{~A}$	7.3/8.2					

[^0]TABLE 3: Mulliken Populations and Spin Density on the Metal Atoms $\mathbf{M}^{1}, \mathbf{M}^{2}$, and \mathbf{M}^{3} for Selected Structures at the B3LYP/ III Level ${ }^{a}$

structure	state	population			charge			spin density		
		M ${ }^{1}$	M^{2}	M^{3}	M^{1}	M^{2}	M^{3}	M^{1}	M^{2}	M^{3}
Pd_{3}	${ }^{1} \mathrm{~A}_{1}$	$\mathrm{s}^{0.71} \mathrm{p}^{0.05} \mathrm{~d}^{9.24}$	$\mathrm{s}^{0.71} \mathrm{p}^{0.05} \mathrm{~d}^{9.24}$	$\mathrm{s}^{0.71} \mathrm{p}^{0.05} \mathrm{~d}^{9.24}$	0.00	0.00	0.00	0.00	0.00	0.00
	${ }^{3} \mathrm{~B}_{1}$	$\mathrm{s}^{0.81} \mathrm{p}^{0.06} \mathrm{~d}^{9.13}$	$\mathrm{s}^{0.64} \mathrm{p}^{0.05} \mathrm{~d}^{9.32}$	$\mathrm{s}^{0.64} \mathrm{p}^{0.05} \mathrm{~d}^{9.32}$	0.00	0.00	0.00	0.82	0.59	0.59
Pt_{3}	${ }^{1} \mathrm{~A}_{1}$	$\mathrm{s}^{0.80} \mathrm{p}^{0.07} \mathrm{~d}^{9.12}$	$\mathrm{s}^{0.80} \mathrm{p}^{0.07} \mathrm{~d}^{9.12}$	$\mathrm{s}^{0.80} \mathrm{p}^{0.07} \mathrm{~d}^{9.12}$	0.00	0.00	0.00	0.00	0.00	0.00
	${ }^{3} \mathrm{~A}_{1}$	$\mathrm{s}^{0.70} \mathrm{p}^{0.06} \mathrm{~d}^{9.26}$	$\mathrm{s}^{0.86} \mathrm{p}^{0.09} \mathrm{~d}^{9.04}$	$\mathrm{s}^{0.86} \mathrm{p}^{0.09} \mathrm{~d}^{9.04}$	-0.02	+0.01	+0.01	0.45	0.78	0.78
	${ }^{3} \mathrm{~B}_{1}$	$\mathrm{s}^{0.82} \mathrm{p}^{0.09} \mathrm{~d}^{9.08}$	$\mathrm{s}^{0.81} \mathrm{p}^{0.09} \mathrm{~d}^{9.09}$	$\mathrm{s}^{0.81} \mathrm{p}^{0.09} \mathrm{~d}^{9.09}$	0.00	-0.00	-0.00	0.68	0.66	0.66
	${ }^{3} \mathrm{~B}_{2}$	$\mathrm{s}^{0.82} \mathrm{p}^{0.10} \mathrm{~d}^{9.12}$	$\mathrm{s}^{0.80} \mathrm{p}^{0.08} \mathrm{~d}^{9.09}$	$\mathrm{s}^{0.80} \mathrm{p}^{0.08} \mathrm{~d}^{9.09}$	0.050.00	+0.02	+0.02	0.65	0.67	0.67
	${ }^{3} \mathrm{~A}_{2}$	$\mathrm{s}^{0.91} \mathrm{p}^{0.09} \mathrm{~d}^{8.99}$	$\mathrm{s}^{0.76} \mathrm{p}^{0.07} \mathrm{~d}^{9.17}$	$\mathrm{s}^{0.76} \mathrm{p}^{0.07} \mathrm{~d}^{9.17}$	-0.00	+0.00	+0.00	0.81	0.59	0.59
$\mathrm{Pd}_{3} \mathrm{H}_{\mathbf{H}} \mathrm{Com} 1$	${ }^{1} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.30} \mathrm{p}^{0.04} \mathrm{~d}^{9.60}$	$\mathrm{s}^{0.40} \mathrm{p}^{0.10} \mathrm{~d}^{9.46}$	$\mathrm{s}^{0.40} \mathrm{p}^{0.10} \mathrm{~d}^{9.46}$	+0.07	+0.04	+0.04	0.00	0.00	0.00
$\mathrm{Pd}_{3}{ }^{-} \mathrm{H}_{-}^{-} \mathrm{Com} 2$	${ }^{1} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.38} \mathrm{p}^{0.08} \mathrm{~d}^{9.50}$	$\mathrm{s}^{0.38} \mathrm{p}^{0.08} \mathrm{~d}^{9.50}$	$\mathrm{s}^{0.42} \mathrm{p}^{0.11} \mathrm{~d}^{9.41}$	+0.04	+0.04	+0.05	0.00	0.00	0.00
$\mathrm{Pd}_{3}{ }^{-} \mathrm{H}_{-}^{-} \mathrm{Com} 3$	${ }^{1} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.36} \mathrm{p}^{0.08} \mathrm{~d}^{9.54}$	$\mathrm{s}^{0.36} \mathrm{p}^{0.08} \mathrm{~d}^{9.53}$	$\mathrm{s}^{0.36} \mathrm{p}^{0.08} \mathrm{~d}^{9.53}$	$+0.03$	$+0.03$	$+0.03$	0.00	0.00	0.00
$\mathrm{Pt}_{3} \mathbf{H} \mathbf{H} \mathbf{M o l}$			$\mathrm{s}^{0.87} \mathrm{p}^{0.06} \mathrm{~d}^{9.11}$	$\mathrm{s}^{0.83} \mathrm{p}^{0.10} \mathrm{~d}^{9.12}$	$+0.15$	-0.04	-0.05	0.00	0.00	0.00
	${ }^{3} \mathrm{~A}^{\prime \prime}$	$\mathrm{s}^{0.68} \mathrm{p}^{0.15} \mathrm{~d}^{8.96}$	$\mathrm{s}^{1.00} \mathrm{p}^{0.08} \mathrm{~d}^{8.98}$	$\mathrm{s}^{0.87} \mathrm{p}^{0.13} \mathrm{~d}^{9.02}$	+0.19	-0.06	-0.03	0.37	0.81	0.80
	${ }^{3} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.69} \mathrm{p}^{0.15} \mathrm{~d}^{8.96}$	$\mathrm{s}^{0.98} \mathrm{p}^{0.08} \mathrm{~d}^{8.99}$	$\mathrm{s}^{0.85} \mathrm{p}^{0.12} \mathrm{~d}^{9.03}$	+0.17	-0.05	-0.02	0.39	0.81	0.79
$\mathrm{Pt}_{3} \mathbf{H}_{\mathbf{H}} \mathbf{C o m 1}$	${ }^{1} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.73} \mathrm{p}^{0.29} \mathrm{~d}^{8.69}$	$\mathrm{s}^{0.84} \mathrm{p}^{0.13} \mathrm{~d}^{9.08}$	$\mathrm{s}^{0.92} \mathrm{p}^{0.04} \mathrm{~d}^{9.11}$	+0.24	-0.05	-0.07	0.00	0.00	0.00
	${ }^{3} \mathrm{~A}^{\prime \prime}$	$\mathrm{s}^{0.71} \mathrm{p}^{0.26} \mathrm{~d}^{8.74}$	$\mathrm{s}^{1.03} \mathrm{p}^{0.06} \mathrm{~d}^{8.99}$	$\mathrm{s}^{0.88} \mathrm{p}^{0.15} \mathrm{~d}^{9.01}$	+0.24	-0.08	-0.04	0.37	0.80	0.83
	${ }^{3} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.72} \mathrm{p}^{0.26} \mathrm{~d}^{8.74}$	$\mathrm{s}^{1.01} \mathrm{p}^{0.07} \mathrm{~d}^{9.00}$	$\mathrm{s}^{0.86} \mathrm{p}^{0.14} \mathrm{~d}^{9.03}$	+0.23	-0.08	-0.03	0.38	0.82	0.79
	${ }^{1} \mathrm{~A}$	$\mathrm{s}^{0.64} \mathrm{p}^{0.17} \mathrm{~d}^{8.95}$	$\mathrm{s}^{0.68} \mathrm{p}^{0.03} \mathrm{~d}^{9.29}$	$\mathrm{s}^{0.98} \mathrm{p}^{0.24} \mathrm{~d}^{8.89}$	+0.22	+0.01	-0.13	0.00	0.00	0.00
$\mathrm{Pt}_{3}{ }_{-}^{-} \mathrm{H}_{-}^{-} \mathrm{Com} 3$	${ }^{1} \mathrm{~A}$	$\mathrm{s}^{0.87} \mathrm{p}^{0.14} \mathrm{~d}^{8.95}$	$\mathrm{s}^{0.74} \mathrm{p}^{0.13} \mathrm{~d}^{8.97}$	$\mathrm{s}^{0.79} \mathrm{p}^{0.13} \mathrm{~d}^{9.11}$	+0.04	+0.15	-0.04	0.00	0.00	0.00
	${ }^{3} \mathrm{~A}$	$\mathrm{s}^{0.91} \mathrm{p}^{0.18} \mathrm{~d}^{8.86}$	$\mathrm{s}^{0.91} \mathrm{p}^{0.18} \mathrm{~d}^{8.86}$	$\mathrm{s}^{0.66} \mathrm{p}^{0.08} \mathrm{~d}^{9.20}$	+0.04	+0.04	+0.06	0.69	0.69	0.53
Pt_{3} _H_Com4	${ }^{1} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.57} \mathrm{p}^{0.08} \mathrm{~d}^{9.31}$	$\mathrm{s}^{0.82} \mathrm{p}^{0.19} \mathrm{~d}^{9.00}$	$\mathrm{s}^{0.57} \mathrm{p}^{0.08} \mathrm{~d}^{9.31}$	+0.04	-0.02	+0.04	0.00	0.00	0.00
	${ }^{3} \mathrm{~A}^{\prime \prime}$	$\mathrm{s}^{0.71} \mathrm{p}^{0.13} \mathrm{~d}^{9.12}$	$\mathrm{s}^{0.89} \mathrm{p}^{0.19} \mathrm{~d}^{8.80}$	$\mathrm{s}^{0.71} \mathrm{p}^{0.13} \mathrm{~d}^{9.12}$	+0.03	+0.09	+0.03	0.51	0.89	0.51
$\mathrm{Pt}_{3} \mathbf{H}_{\mathbf{-}} \mathrm{Com5a}$	${ }^{1} \mathrm{~A}^{\prime}$	$\mathrm{s}^{0.57} \mathrm{p}^{0.13} \mathrm{~d}^{9.26}$	$\mathrm{s}^{0.63} \mathrm{p}^{0.10} \mathrm{~d}^{9.25}$	$\mathrm{s}^{0.63} \mathrm{p}^{0.10} \mathrm{~d}^{9.25}$	+0.03	+0.01	+0.01	0.00	0.00	0.00

${ }^{a} \mathrm{M}_{1}$ is the apex atom in the trimers. Otherwise labels follow those in the figures.

Figure 1. Schematic presentation of molecular orbitals of the $\mathrm{Pt}_{3}\left({ }^{1} \mathrm{~A}_{1}, D_{3 h}\left(C_{2 v}\right)\right), \mathrm{Pd}_{3}\left({ }^{1} \mathrm{~A}_{1}, D_{3 h}\right)$, and $\mathrm{Pd}_{3}\left({ }^{3} \mathrm{~B}_{1}, C_{2 v}\right)$ clusters. Energetics presented in the right corner of the schemes are in hartrees. Atomic orbital contributions are labeled as $\mathrm{M}^{1} / \mathrm{M}^{2} / \mathrm{M}^{3}$.
that B3LYP calculations give reliable results concerning the electronic structures of the $\mathrm{Pd} / \mathrm{Pt}$ dimers, in comparison with our CASPT2 calculations and previous theoretical investigations as well as available experimental data. Both Pd_{2} and Pt_{2} have triplet ground electronic states, while the singlet-triplet separation for Pd_{2} is larger than Pt_{2}.

For the reaction of $\mathrm{Pt}_{2}+\mathrm{H}_{2} / \mathrm{CH}_{4}$, it has been found that $\mathrm{H}-\mathrm{H} /$ $\mathrm{C}-\mathrm{H}$ activation preferentially takes place on one Pt atom via nonplanar structures, and then one of the H atoms migrates to the other Pt atom with negligible barrier. The $\mathrm{H}-\mathrm{H}$ activation is barrierless on both the singlet and the triplet state, while the $\mathrm{C}-\mathrm{H}$ activation has distinct barriers. Since the HOMO and LUMO of Pt_{2} are of metal d orbital character, both the $\mathrm{H}-\mathrm{H}$ activation and the $\mathrm{H}-\mathrm{Pt}$ bond formation proceed in a localized fashion and H atoms do not occupy a bridged site.

For $\mathrm{Pd}_{2}+\mathrm{H}_{2}$, it is found that Pd_{2} is able to activate the $\mathrm{H}-\mathrm{H}$ bond without barrier on the singlet state because the high lying σ_{s} orbital is capable of accepting electron density from H_{2} efficiently, and the triplet configuration of Pd_{2} can form strong covalent bonds with the two H atoms. For the same reason, the H_{2} activation on Pd_{2} takes place preferentially when the $\mathrm{H}-\mathrm{H}$ approaches the $\mathrm{Pd}-\mathrm{Pd}$ bond perpendicularly, a clear
contrast to the case of $\mathrm{Pt}_{2}-\mathrm{H}_{2}$. Since the σ_{s} orbital even in the triplet configuration of Pd_{2} is high lying in energy, the $\mathrm{Pd}-\mathrm{H}$ bonds have large s character, and the H atoms are found to prefer bridged sites. Moreover, the triplet state which involves electronic excitation to the σ^{*} orbital destabilizes not only the $\mathrm{Pd}-\mathrm{Pd}$ interaction but also the $\mathrm{Pd}-\mathrm{H}$ interaction and therefore is very high in energy. In the $\mathrm{Pd}_{2}-\mathrm{CH}_{4}$ system, two $\mathrm{C}-\mathrm{H}$ activation paths have been found, among which the asymmetric one is favored due to the fact that CH_{3} prefers a directional bond.
B. Structures of Metal Trimers. In this section, we shall discuss the electronic structure and reactivities of Pt and Pd trimers. First of all, let us consider Pt_{3}. According to previous studies ${ }^{8,23}$ and also some preliminary investigations here, linear and $C_{2 v}$ structures far from $D_{3 h}$ are relatively high in energies, and therefore only structures close to $D_{3 h}$ have been calculated. Since the ground state of Pt atom is $\mathrm{s}^{1} \mathrm{~d}^{9}\left({ }^{3} \mathrm{D}\right)$, it is expected that the Pt_{3} structures, in principle, may have spin multiplicity up to 7. Since we expected that the structures with a multiplicity 7 will be energetically less favorable, we have studied the structures for up to quintet states. All the structures presented in Table 1 have zero imaginary frequency. As seen in Table 1,

$\mathrm{H}^{1}-\mathrm{Pd}^{1}-\mathrm{Pd}^{3}-\mathrm{Pd}^{2}:-48.8^{\circ}$
$\mathrm{H}^{2}-\mathrm{Pd}^{2}-\mathrm{Pd}^{3}-\mathrm{Pd}^{1}:-122.1^{\circ}$

$\mathrm{H}^{1}-\mathrm{Pd}^{1}-\mathrm{Pd}^{3}-\mathrm{Pd}^{2}:-51.6^{0}$

$$
\mathrm{C}_{\mathrm{s}}^{1} \mathrm{~A}^{\prime}
$$

$\mathrm{Pd}_{3-} \mathrm{H}_{-} \mathrm{Com} 3$ - 33.6

H-Pd ${ }^{2}-\mathrm{Pd}^{3}-\mathrm{Pd}^{1}:-121.5^{\circ}$
C-Pd ${ }^{1}-\mathrm{Pd}^{2}-\mathrm{Pd}^{3}: 92.2^{\circ}$
$\mathrm{C}_{\mathrm{s}}{ }^{\prime} \mathrm{A}^{\prime}$
trans $-\mathrm{Pd}_{3} \mathrm{CH}_{3} \mathrm{Coml}^{-10.2}$

H-Pd ${ }^{1}-\mathrm{Pd}^{2}-\mathrm{Pd}^{3}: 137.2^{\circ}$
$\mathrm{C}-\mathrm{Pd}^{2} \cdot \mathrm{Pd}^{1}-\mathrm{Pd}^{3}:-71.9^{\circ}$
$\mathrm{C}_{1} \quad \mathrm{I}_{\mathrm{A}} \quad \mathrm{Pd}_{3} \mathrm{CH}_{3} \mathrm{Com} 2 \quad-2.3$

H- $\mathrm{Pd}^{2}-\mathrm{Pd}^{3}-\mathrm{Pd}^{1}: 51.0^{\circ}$
C-Pd ${ }^{1}-\mathrm{Pd}^{2}-\mathrm{Pd}^{3}: 90.7^{\circ}$
$\mathrm{C}_{5}{ }^{\prime} \mathrm{A}^{\prime} \quad 775 \mathrm{icm}^{-1}$
$\mathrm{Pd}_{3} \mathrm{CH}_{3}$ TSSa1 18.0

$\mathrm{H}-\mathrm{Pd}^{2}-\mathrm{Pd}^{3}-\mathrm{Pd}^{1}: 44.5^{\circ}$
C- $\mathrm{Pd}^{2}-\mathrm{Pd}^{3}-\mathrm{Pd}^{\mathrm{d}}:-148.6^{\circ}$
$\mathrm{C}_{\mathrm{s}}{ }^{1}{ }_{\mathrm{A}}{ }^{\prime}$
$\mathrm{Pd}_{3} \mathbf{C H}_{2} \mathrm{Coml}^{1} \quad-4.6$

Figure 2. Geometries (in \AA and deg) of intermediates and transition states involved in the $\mathrm{H}_{2} / \mathrm{CH}_{4}$ activation on Pd_{3}. Energies (in $\mathrm{kcal} / \mathrm{mol}$, at the B3LYP/III level with ZPC) are measured relative to the triplet ground electronic state reactants and are presented in italics. The imaginary frequency is also give for transition states.
the ground electronic state of Pt_{3} is predicted to be the closedshell ${ }^{1} \mathrm{~A}_{1}\left(\right.$ in $\left.C_{2 v}\right)$. As seen in Figure 1, the HOMO a_{2} and LUMO a_{2}^{\prime} are d_{π} and d_{δ} orbitals of the Pt atoms, respectively, and the triplet ${ }^{3} \mathrm{~B}_{1}\left(\mathrm{a}_{2}{ }^{1} \mathrm{~b}_{2}{ }^{1}\right)$ state is expected to be very close in energy to the ground state. Indeed, as seen in Table 1 the ${ }^{3} \mathrm{~B}_{1}\left(\mathrm{a}_{2}{ }^{1} \mathrm{~b}_{2}{ }^{1}\right)$ state is only $0.2 \mathrm{kcal} / \mathrm{mol}$ (at the B3LYP/III level) higher in energy. Several other triplet states are also close in energy, manifesting the weak coupling of the d orbitals. ${ }^{8,24}$ All the triplet states are distorted away from perfect $D_{3 h}$ due to the well-known Jahn-Teller effect, although the distortion is insignificant with all $\angle \mathrm{Pt}-\mathrm{Pt}-\mathrm{Pt}$ angles at most 3° away from 60.0°. As argued by Carter et al. in a previous study, ${ }^{8}$ this is because the d -d overlap does not contribute to the binding energy significantly. Indeed, as seen in Figure 1, the main bonding orbital a_{1} contains mostly sd_{σ} orbitals of Pt atoms. According to the Mulliken populations presented in Table 3, the Pt atoms in all the electronic states including the singlet state adopt mainly the $\mathrm{s}^{1} \mathrm{~d}^{9}$ configurations (for about 75%, with
d^{10} for about 25%), which is in contrast to the conclusion by Carter et al. ${ }^{8}$ which proposed that ${ }^{1} \mathrm{~A}_{1}$ actually consists of two $\mathrm{s}^{1} \mathrm{~d}^{9}$ and one d^{10} atom. Since ${ }^{1} \mathrm{~A}_{1}$ is not subject to the JahnTeller distortion and adopts a $D_{3 h}$ symmetry, we feel it is unlikely to have the symmetry-broken wave function which gives the inequivalent populations. The $\mathrm{Pt}-\mathrm{Pt}$ distances in the electronic states considered here are rather close among the singlet and all triplets and a little longer in the quintet states, especially in ${ }^{5} \mathrm{~B}_{1}$. All the quintet states obtained here are higher in energy compared to the ${ }^{1} \mathrm{~A}_{1}$ state by $\sim 20-25 \mathrm{kcal} / \mathrm{mol}$.

Comparing our results with those obtained previously with $\mathrm{CCCI} / \mathrm{GVB}^{8}$ or one valence electron effective potential approach, ${ }^{20}$ we see that B3LYP/I gives much shorter $\mathrm{Pt}-\mathrm{Pt}$ bond lengths, $\sim 2.5 \AA$ compared to $\sim 2.9 \AA$ from GVB, and also much larger atomization energies, $\sim 120 \mathrm{kcal} / \mathrm{mol}$ compared to ~ 50 $\mathrm{kcal} / \mathrm{mol}$ from CCCI/GVB given in ref 8 as the lower bound. Given the experience with the dimer systems we have just described above, we feel that our number is closer to reality,

Figure 3. Geometries (in \AA and deg) of intermediates and transition states involved in the H_{2} activation on Pt_{3}. Plain numbers are for singlet state, and numbers in parentheses and brackets are for triplet electronic states, as indicated by the state label under each structure. Energies (in kcal/mol, at the B3LYP/III level with ZPC) for both the singlet and triplets are relative to the singlet ground electronic state reactants and are presented in italics.
while the CCCI/GVB results significantly underestimate the atomization energies presumably due to the large core ECP and small basis sets employed. Indeed, the recent CASSCFMRSDCI calculations of Balasubramanian et al. ${ }^{25}$ give an atomization energy of 11.8 eV for Pt_{4}, which is closer to our value.

Let us now consider Pd_{3}. Since the ground state of the Pd atom is $s^{0} \mathrm{~d}^{10}\left({ }^{1} \mathrm{~S}\right)$, it is expected that the $\mathrm{a}_{1}{ }^{\prime}$ bonding orbital containing $\operatorname{sd}_{\sigma}$ orbitals of Pd atoms is not as stable as other d orbitals and becomes the HOMO of Pd_{3}. The orbital diagrams, shown in Figure 1, calculated for the ${ }^{1} \mathrm{~A}_{1}$ state of Pd_{3} constrained to $D_{3 h}$ symmetry substantiate this expectation. However, the singlet state is energetically higher than several triplet states,
which have open d electron configurations and are very close in energy within a few $\mathrm{kcal} / \mathrm{mol}$. Among them, as seen in Table 1 , the ${ }^{3} B_{1}\left(a_{2}\right)^{1}\left(b_{2}\right)^{1}$ is found to be the lowest at the present level of theory. Similar to the case of Pt_{3}, all triplet states are distorted away from perfect $D_{3 h}$ due to the Jahn-Teller effect, although the geometry distortion of Pd_{3} from $D_{3 h}$ is not severe in all the triplet states. The bond lengths of Pd_{3} in all the triplet states are rather similar, while those in the singlet state are a little shorter. The quintet states are very high in energy and therefore have not been included in Table 1. As expected, the atomization energy of Pd_{3}, which is around $50 \sim 60 \mathrm{kcal} / \mathrm{mol}$ for all the states, is smaller than that of Pt_{3} by about $60 \mathrm{kcal} /$ mol. As seen from the Mulliken population in Table 3, the Pd

H-Pt ${ }^{1}-\mathrm{Pt}^{2}-\mathrm{Pt}^{3}: 1+49.4^{\circ}\left(147.3^{\circ}\right)$
C-Pt ${ }^{1}-\mathrm{Pt}^{3}-\mathrm{Pt}^{2}:-161.8^{\circ}\left(-163.9^{\circ}\right)$
$\left.C_{1}^{1} \mathrm{Al}^{3} \mathrm{~A}\right) 806(816) \mathrm{icm}^{-1}$
$\mathrm{Pt}_{3} _\mathrm{CH}_{3}$ _TSa $1.1(0.4)$

$\mathrm{C}-\mathrm{Pt}^{1}-\mathrm{Pt}^{3}-\mathrm{Pt}^{2}:-175.5(-112.8)^{\circ}$
$\mathrm{C}_{1}{ }^{1} \mathrm{~A}\left({ }^{3} \mathrm{~A}\right)$

Figure 4. Geometries (in \AA and deg) of intermediates and transition states involved in the CH_{4} activation on Pt_{3}. Plain numbers are for singlet state, and numbers in parentheses and brackets are for triplet electronic states, as indicated in the state label under each structure. Energies (in $\mathrm{kcal} / \mathrm{mol}$, at the B3LYP/III level with ZPC) for both the singlet and triplets are relative to the singlet ground electronic state reactants and are presented in italics.
atoms in Pd_{3} have large s characters, and therefore this $60 \mathrm{kcal} /$ mol difference can be simply interpreted as the promotion energies ($3 \times 20 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{d}^{10} \rightarrow \mathrm{~s}^{1} \mathrm{~d}^{9}$) that have to be paid for all three Pd atoms during the Pd_{3} formation.

The results for Pd_{3} obtained here agree in general with the previous CASSCF-MRSDCI study of Balasubramanian ${ }^{26}$ and the DFT study of Valerio et al. ${ }^{10 \mathrm{c}}$ The three studies including the current one gave very similar atomization energies, which are all around $60 \mathrm{kcal} / \mathrm{mol}$ compared to $3 \mathrm{Pd}\left({ }^{1} \mathrm{~S}\right)$. The ground electronic states, however, differ from one another in these studies. The CASSCF-MRSDCI study of Balasubramanian ${ }^{26}$ gave ${ }^{1} \mathrm{~A}_{2}$ as the ground state. Valerio et al. ${ }^{10 \mathrm{c}}$ and we obtained the ${ }^{3} \mathrm{~B}_{2}$ as the ground state. However, in our study the ${ }^{3} \mathrm{~B}_{1}$ state is energetically very close ($1.3,1.0$, and $0.1 \mathrm{kcal} / \mathrm{mol}$ at the B3LYP/I, B3LYP/II, and B3LYP/III levels, respectively) to the
ground state, while in ref 10 c , the energy gap between the ground ${ }^{3} \mathrm{~B}_{2}$ and excited ${ }^{3} \mathrm{~B}_{1}$ states is found to be $3.8 \mathrm{kcal} / \mathrm{mol}$ at the B3LYP/I level. Note that the total energy of the $\mathrm{Pd}_{3}\left({ }^{3} \mathrm{~B}_{1}\right)$ calculated at the B3LYP/I level in our paper, - 380.21239 hartrees, is lower than that obtained by Valerio et al. ${ }^{10 c}$ Since the open-shell low-spin ${ }^{1} \mathrm{~A}_{2}$ state cannot be described correctly in the present implementation of DFT, we cannot make further comments on the result of Balasubramanian. ${ }^{26}$ However, since the difference is small, we did not pursue the issue further, as the main purpose of the current work is to investigate the reactivities of Pd_{3}.
C. Reactivities of $\mathbf{P d}_{3}$. Since the potential energy surface of $\mathrm{Pd}_{3}+\mathrm{H}_{2} / \mathrm{CH}_{4}$ is relatively simple, we shall consider the reactivities of Pd_{3} first.
$\mathbf{P d}_{3}+\mathbf{H}_{2}$. The reaction mechanism of $\mathrm{Pd}_{3}+\mathrm{H}_{2}$ has also been subjected to the study of Balasubramanian et al. at the CASSCF-MRSDCI level. ${ }^{9 c}$ In their studies, several "minima" have been obtained in $C_{2 v}$ and C_{s} symmetries with Pd_{3} fixed at $D_{3 h}$ local symmetry. Limited potential energy scans with fixed $\mathrm{H}-\mathrm{H}$ distances indicate the existence of a "barrier" resulting from the crossing of $\mathrm{Pd}_{3}+\mathrm{H}_{2}$ and $\mathrm{Pd}_{3}+\mathrm{H}+\mathrm{H}$ potential curves, which is a rather unusual argument since the $\mathrm{H}-\mathrm{H}$ distances at the "crossing point" are quite different, 0.76 and $8.0 \AA$, for the two potential curves, respectively. With our experience in the case of $\mathrm{Pt}_{2}+\mathrm{H}_{2}$, we feel that many important regions of the potential energy surfaces have not been sampled by their scans, which turned out to be the case, as we shall see in the following discussion.

In optimization of $\mathrm{Pd}_{3}-\mathrm{H}_{2}$ complexes, we have obtained three types of stable structures, $\mathbf{P d}_{\mathbf{3}} \mathbf{H} \mathbf{H} \mathbf{C o m 1 - 3}$, as shown in Figure 2. The most obvious character of these complexes is that the H atoms all occupy the bridged sites, either between two Pd atoms in an η^{2}-fashion or between three Pd atoms in an η^{3} fashon. The reason has already been discussed in the case of Pd_{2}; namely, a frontier orbital contains large s characters, and therefore the spherically symmetric H atom prefers to bind at bridged sites. Interestingly, structure $\mathbf{P d}_{3} \mathbf{H}_{-} \mathbf{C o m} 2$ has \mathbf{H} atoms cis to each other (we expect the trans-isomer of this complex to be energetically very close to its cis-isomer and was not included in this paper) and is far from planar, different from the planar A structure studied in ref 9c. The structure optimized with planar constraint (not shown), as was done in ref 9c, contains two imaginary frequencies ($\mathrm{b}_{1}, \mathrm{a}_{2}$) of several hundred cm^{-1}, but is energetically not far from the true minimum $\mathbf{P d}_{3}$ _H_Com2. The optimized distance of $\mathrm{Pd}^{3}-\mathrm{Pd}^{1,2}$ with planar constraint is $0.2 \AA$ longer than that in $\mathbf{P d}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$, which indicates that by mixing the out-of-plane d orbital contribution to the $\mathrm{Pd}-\mathrm{H}$ bonding, the $\mathrm{Pd}-\mathrm{Pd}$ bond is stabilized by minimizing the repulsion between hybridized d orbitals.

Energetically, these three structures are all very similar, and all have binding energies of around $33-35 \mathrm{kcal} / \mathrm{mol}$ relative to the ground-state reactants $\mathrm{Pd}_{3}+\mathrm{H}_{2}$. These are all larger than those found in ref 9 c , where the most stable isomer A has a binding energy of $20.3 \mathrm{kcal} / \mathrm{mol}$ compared to the singlet $\mathrm{Pd}_{3}+$ H_{2}. Presumably this is due to the fact that Pd_{3} has been fixed to be equilateral in ref 9 c . Similar to the case of $\mathrm{Pd}_{2}-\mathrm{H}_{2}$, the triplet states of $\mathbf{P d}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 1} \mathbf{- 3}$ are all very high in energy by an electronvolt or so and therefore have not been studied further.

As to the interconversion between these structures, an isomerization transition state $\mathbf{P d}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{T S i}$ has been obtained, which according to the normal mode shown in Figure 2 connects $\mathbf{P d}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 1}$ and $\mathbf{P d}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$. To be more specific, the H atom that occupied the $\mathbf{3}$-fold bridged site in $\mathbf{P d}_{\mathbf{3}} \mathbf{H} \mathbf{H} \mathbf{C o m 1}$ is

Figure 5. Schematic potential energy profile (in $\mathrm{kcal} / \mathrm{mol}$, at the B3LYP/III level with ZPC) for the $\mathrm{H}_{2} / \mathrm{CH}_{4}$ activation on Pd_{3}.
moving away from the center of Pd_{3}, and the other H atom is moving up relative to the Pd_{3} plane; eventually the two H atoms occupy the $\mathrm{Pd}^{3}-\mathrm{Pd}^{1}$ and $\mathrm{Pd}^{3}-\mathrm{Pd}^{2}$ bridged sites, respectively, both above the Pd_{3} plane, to form $\mathbf{P d}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$. It is interesting to note that since H^{2} is nearly in the $\overline{\mathrm{P}} \mathrm{d}_{3}$ plane at the saddle point, the $\mathrm{Pd}^{3}-\mathrm{Pd}^{2}$ distance of $2.936 \AA$ in $\mathbf{P d}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{T S i}$ is longer than that in either $\mathbf{P d}_{3} \mathbf{H}_{-} \mathbf{C o m} 1$ or $\mathbf{P d}_{3} \mathbf{H}_{-}^{-} \mathbf{C o m} 2$, which are around $\sim 2.8 \AA$. This is the same effect as mentioned above in the discussion of planar versus nonplanar $\mathbf{P d}_{3} \mathbf{H}_{-} \mathbf{C o m} 2$. The isomerization barrier is small, about $4 \mathrm{kcal} / \mathrm{mol}$. This is not surprising since the $\mathrm{Pd}-\mathrm{H}$ interaction is hardly affected during the isomerization process. For the interconversion between $\mathbf{P d}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 1}$ and $\mathbf{P d}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 3}$, a similar situation is expected, and therefore no transition-state search has been carried out.

The most important and interesting issue is probably the activation process leading $\mathrm{H}_{2}+\mathrm{Pd}_{3}$ to either of the compounds found here. Despite several trials starting from different geometries, no transition state for H_{2} activation on the singlet state has been obtained for Pd_{3}. All TS optimizations led to activated complexes such as $\mathbf{P d}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m 1}$, which implies that $\mathrm{H}-\mathrm{H}$ activation takes place without barrier on the singlet surface. To verify this, we have carried out partial optimizations along two paths which are shown in Scheme 1. In the first, C_{s}, path, we fix the distance R between the $\mathrm{H}-\mathrm{H}$ center and the $\mathrm{Pd}^{3}-\mathrm{Pd}^{2}$ center at each step and optimize the other parameters fully while keeping $\mathrm{H}-\mathrm{H}$ in the C_{s} plane, the plane containing Pd^{1} and the $\mathrm{Pd}^{3}-\mathrm{Pd}^{2}$ center and perpendicular to the Pd_{3} plane. This path is designed to lead to $\mathbf{P d}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m 1}$. In the second, $C_{2 v}$, path, an additional constraint that the Pd_{3} plane bisects the $\mathrm{H}-\mathrm{H}$ bond perpendicularly has been added; this path is designed to lead to structures like $\mathbf{P d}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 3$. The results of partial
optimization verify that no activation barrier exists on the singlet-state potential energy surfaces leading to $\mathbf{P d}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m 1}$, while the highly symmetric pathway leading directly to $\mathbf{P d}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 3$ has a large barrier. Therefore it is expected that $\mathbf{P d}_{3}{ }_{-} \mathbf{H}_{-}^{-} \mathbf{C o m} 3$ is formed via isomerization from $\mathbf{P d}_{3} \mathbf{H}_{-} \mathbf{C o m 1}$, but not directly from $\mathrm{H}_{2}+\mathrm{Pd}_{3}$. Similar to the case of $\mathrm{Pd}_{2}-$ H_{2}, the minimum on the seam of crossing (MSX) between the singlet- and triplet state-surfaces constitutes the approximate barrier for the actual activation process starting from the triplet ground state. However, since the singlet-triplet splitting is much smaller in the case of Pd_{3} than $\mathrm{Pd}_{2}, 4.7$ versus $12.8 \mathrm{kcal} /$ mol, it is expected that Pd_{3} in the ground triplet state is more active than Pd_{2} in the $\mathrm{H}-\mathrm{H}$ activation process.
$\mathbf{P d}_{3}+\mathbf{C H}_{4}$. To our knowledge, no reaction mechanism has been studied in detail before. However, on the basis of our studies on $\mathrm{Pd}_{2}+\mathrm{CH}_{4}$ and $\mathrm{Pd}_{3}+\mathrm{H}_{2}$, we may make a few speculations before any calculations. First of all, the H atom is expected to occupy the bridged sites and CH_{3} is localized on a single Pd atom. There might exist two activation pathways: one proceeds in an asymmetric fashion while the other is symmetric, as we found in $\mathrm{Pd}_{2}+\mathrm{CH}_{4}{ }^{11}$

Indeed, our calculations verified most of the expectations. First of all, we have considered the symmetric pathway and obtained the $\mathrm{C}-\mathrm{H}$ activation transition state $\mathbf{P d}_{3} \mathbf{C H}_{3}$ _TSa1 and the product $\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{C o m 1}$. In $\mathbf{P d}_{3_{-}} \mathbf{C H}_{3} \mathbf{-} \mathbf{C o m 1}$, the H occupied the 3 -fold bridged site, while CH_{3} is devoted to one Pd atom. The relative orientation of H and CH_{3} in $\mathbf{P d}_{3} \mathbf{C H}_{\mathbf{3}_{\mathbf{-}}} \mathbf{C o m} 1$ can be either cis or trans, but has little effect on the energetics due to the large distance between them; the trans- $\mathbf{P d}_{\mathbf{3}} \mathbf{C H}_{\mathbf{3}} \mathbf{C o m} \mathbf{1}$ is more stable by $0.3 \mathrm{kcal} / \mathrm{mol}$ than the cis-isomer. Note that the cis- $\mathbf{P d}_{\mathbf{3}} \mathbf{C H}_{\mathbf{3}} \mathbf{C o m 1}$ isomer directly connects to the CH activation transition state $\mathbf{P d}_{\mathbf{3}} \mathbf{C H}_{\mathbf{3}} \mathbf{} \mathbf{T S a 1}$

Figure 6. Schematic potential energy profile (in $\mathrm{kcal} / \mathrm{mol}$, at the B3LYP/III level with ZPC) for the $\mathrm{H}_{2} / \mathrm{CH}_{4}$ activation on Pt_{3}. Solid curves are for singlet electronic states, and dotted lines are for triplet states.

SCHEME 1

(a)

(b)
$\mathrm{C}_{2 \mathrm{v}}$ assumed
and energetically lies $9.9 \mathrm{kcal} / \mathrm{mol}$ lower than the ground-state reactants. No isomerization saddle points between the cis- and the trans-isomers have been searched, since we expect a very small barrier. The isomerization barrier is indeed insignificant, as we shall see later for the similar structure of $\mathrm{Pt}_{3}-\mathrm{H}_{2}$. Another complex in which CH_{3} occupies the $\mathrm{Pd}^{3}-\mathrm{Pd}^{2} 2$-fold bridged site and the H atom occupies the 3 -fold bridged site, $\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{C o m 1} \mathbf{C o}^{\prime}$, has also been obtained. However, the energy of this structure is relatively high, merely $4.6 \mathrm{kcal} / \mathrm{mol}$ below the ground-state reactants, since CH_{3} prefers a directional bond instead of a bridged site. Therefore, we will not discuss in more detail this complex or the transition states separating this complex from the dissociation limit, $\mathrm{Pd}_{3}+\mathrm{CH}_{4}$.

The character of the symmetric activation transition state, $\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{T S a 1}$, should be quite obvious from its structure and the normal mode presented in Figure 2. Compared to the $\mathrm{Pd}_{2}-$ CH_{4} system, the barrier height for $\mathrm{C}-\mathrm{H}$ activation in Pd_{3} is rather high, $18.0 \mathrm{kcal} / \mathrm{mol}$, and nearly doubles the barrier in the dimer case. The reason for this shall be considered a little later.

Referring to the asymmetric pathway in the $\mathrm{Pd}_{2}-\mathrm{CH}_{4}$ system, we have also studied and found an asymmetric mechanism in the $\mathrm{Pd}_{3}-\mathrm{CH}_{4}$ case. In this mechanism, the activation TS $\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{T S a} \mathbf{2}$ can be regarded as $\mathbf{P d}_{\mathbf{2}} \mathbf{C H}_{\mathbf{3}} \mathbf{T S a} \mathbf{1}$ in the dimer case ${ }^{11}$ plus an interacting Pd atom. Indeed, the $\mathrm{CH}_{4}-$ $\mathrm{Pd}^{1}-\mathrm{Pd}^{2}$ part in $\mathbf{P d}_{3} \mathbf{C H}_{\mathbf{3}} \mathbf{T S a} \mathbf{2}$ is nearly planar and very similar to the structure of $\mathbf{P} \overline{\mathbf{d}}_{2} \mathbf{C H}_{3} \mathbf{- T S a 1}$. The barrier height for the asymmetric path is also large, $14.6 \mathrm{kcal} / \mathrm{mol}$ measured from the ground-state reactant. In addition, we have found a complex $\mathbf{P d}_{3} \mathbf{C H}_{3}$ _Com2, which is energetically higher than $\mathbf{P d}_{3} \mathbf{C H}_{\mathbf{3}} \mathbf{C} \mathbf{C o m} 1$ and is only $2.3 \mathrm{kcal} / \mathrm{mol}$ below the reactants. As seen from its geometry, the lower stability of the $\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{C} \mathbf{C o m} 2$ complex obviously comes from the repulsion between the H and CH_{3} groups. Intrinsic reaction coordinate (IRC) calculations confirm that $\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{T S a} 2$ connects the complex cis- $\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{C o m} 1$ with $\mathbf{P d}_{3} \mathbf{C H}_{3} \overline{\mathbf{H}}_{\mathbf{3}} \mathbf{C o m} 2$. As mentioned above, the cis $-\mathbf{P d}_{3} \mathbf{C H}_{3} \mathbf{C o m 1}$ complex is only $0.3 \mathrm{kcal} /$ mol higher in energy than trans $-\mathbf{P d}_{\mathbf{3}_{\mathbf{-}} \mathbf{C H}_{\mathbf{3}} \mathbf{C o m 1} \text { and is }}$ expected to be separated from the latter with a very small barrier.

The schematic profile for the reaction of $\mathrm{H}_{2} / \mathrm{CH}_{4}+\mathrm{Pd}_{3}$ is summarized in Figure 5. In short, we found that although the products of $\mathrm{C}-\mathrm{H}$ activation on Pd_{3} are similar energetically to those in the dimer system, the activation barriers are significantly higher, raised from $<10 \mathrm{kcal} / \mathrm{mol}$ in the Pd_{2} case to $>15 \mathrm{kcal} /$ mol in Pd_{3}. This is in accord with the experimental results of Cox et al., ${ }^{13}$ where the rate constant of CH_{4} activation on Pd_{2} is much larger than that on Pd_{3} or Pd_{4}. The reason for this can be traced back to the s character of Pd atoms in the cluster, the argument proposed by Siegbahn et al. ${ }^{7 a}$ In Pd_{2}, as established in previous studies and also from the Mulliken population in Table 3, the two Pd atoms are mainly in their d^{10} configurations, and therefore the repulsion between the dimer and the incoming CH_{4} is small, which implies a low barrier. In the case of Pd_{3}, however, all the Pd atoms have significant s character even in
the singlet state, and therefore a larger repulsion between Pd_{3} and the incoming CH_{4} is expected, which results in a higher barrier. Since this effect is not present in the final products and their stability depends on the triplet configuration of Pd_{n}, we see that the $\mathrm{C}-\mathrm{H}$ activation products in Pd_{2} and Pd_{3} have similar binding energies.
D. Reactivities of $\mathbf{P t}_{3} . \quad \mathbf{P t}_{3}+\mathbf{H}_{\mathbf{2}}$. The reaction of $\mathrm{Pt}_{3}+$ H_{2} has been studied by Balasubramanian et al. ${ }^{9 \mathrm{c}}$ with the CASSCF-MRSDCI approach. Similar to their former studies on $\mathrm{Pd}_{3}+\mathrm{H}_{2}$ and $\mathrm{Pt}_{2}+\mathrm{H}_{2}$, only limited potential energy scans have been carried out and some "barriers" were observed. As was demonstrated in the above discussions, full geometry optimization leads to qualitatively different mechanisms. Indeed, the planar structures obtained by Balasubramanian et al. ${ }^{\text {cc }}$ turned out to have usually more than one imaginary frequency, with some as large as $700 \mathrm{i} \mathrm{cm}^{-1}$.

According to our studies on the $\mathrm{Pt}_{2}+\mathrm{H}_{2}$ system, $\mathrm{H}-\mathrm{H}$ activation preferentially takes place at first on one metal atom. Then one of the H atoms is transferred to the other metal with negligible barrier. The activation mechanism of H_{2} on Pt_{3} follows the same pattern, as we shall explore in the following. Similar to the study of $\mathrm{Pt}_{2}-\mathrm{H}_{2}$, we have calculated both singlet and triplet states, and states of different irrep (irreducible representation) have all been calculated for the triplet whenever the structure has symmetry. For the singlet electronic states only restricted closed-shell calculations for totally symmetric irrep have been carried out, and therefore singlet states not of totally symmetric irrep (such as ${ }^{1} \mathrm{~A}{ }^{\prime \prime}$ in C_{s}) have not been considered. This is practically forced because large spin contamination is expected for these states due to the close lying triplet states. However this may be justified, as many of singlet intermediates and transition states have C_{1} symmetry, and even in C_{s} symmetry ${ }^{1} \mathrm{~A}^{\prime}$ and ${ }^{1} \mathrm{~A}^{\prime \prime}$ states are similar in energy as is seen for many ${ }^{3} \mathrm{~A}^{\prime}$ and ${ }^{3} \mathrm{~A}^{\prime \prime}$ states.

First of all, a rather strong molecular complex, $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{M o l}$, has been found on the ${ }^{1} \mathrm{~A}^{\prime},{ }^{3} \mathrm{~A}^{\prime}$, and ${ }^{3} \mathrm{~A}^{\prime \prime}$ states. The $\overline{\mathrm{P}} \mathrm{t}-\mathrm{Pt}$ distances stretch slightly compared to those in the free Pt_{3}, to a larger extent for the triplet than the singlet. The structure is far from $C_{2 v}$ for all the electronic states, implying significant hybridization of the metal d orbitals during the $\mathrm{H}-\mathrm{Pt}$ interaction. For all the electronic states, the $\mathbf{H}-\mathbf{H}$ distance in $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{M o l}$ is much longer than the corresponding distance in the dimer case, which is in line with the larger H_{2} binding energy for the trimer complex. Among the three states considered here, the ${ }^{3} \mathrm{~A}$ " is the lowest, $23.8 \mathrm{kcal} / \mathrm{mol}$ below the ground-state singlet reactant, and the ${ }^{1} \mathrm{~A}^{\prime}$ and ${ }^{3} \mathrm{~A}^{\prime}$ states are 3.7 and $4.3 \mathrm{kcal} / \mathrm{mol}$ higher in energy than ${ }^{3} \mathrm{~A}^{\prime \prime}$, respectively. The next step, parallel to the dimer case, is the $\mathrm{H}-\mathrm{H}$ activation via the transition state $\mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{T S a}$ to form $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m}$. Despite the large imaginary frequency and 2.1(1.4) [$\overline{3} .2] \mathrm{kcal} / \mathrm{mol}$ barrier height (for ${ }^{1} \mathrm{~A}^{\prime},{ }^{3} \mathrm{~A}^{\prime}$ in parentheses and ${ }^{3} \mathrm{~A}^{\prime \prime}$ in brackets, respectively, measured from the molecular complex $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{M o l}$) at the B3LYP/BSI level, the activation barrier disappears for all three electronic states upon improving its energetics using the B3LYP/BSIII method. In the complex $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m 1}$, the structure is highly asymmetric. The $\mathrm{Pt}^{1}-\mathrm{Pt}^{2}$ bond is significantly longer than the other $\mathrm{Pt}-\mathrm{Pt}$ distances, which clearly comes from the fact that Pt^{1} is interacting with two H atoms. The $\mathrm{H}-\mathrm{Pt}$ bonds substantially bend toward the $\mathrm{Pt}^{1}-\mathrm{Pt}^{3}$ bond so that $\mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{M o l}$ can be regarded as $\mathbf{P t}_{\mathbf{2}} \mathbf{H} \mathbf{H} \mathbf{M o l},{ }^{11}$ with the third Pt atom, $\overline{\mathrm{P}^{2}}$, interacting from the back side. Among the three electronic states, ${ }^{3} \mathrm{~A}^{\prime \prime}$ is the lowest, $23.8 \mathrm{kcal} / \mathrm{mol}$ (with ZPC) below the ground-state reactants, with ${ }^{1} \mathrm{~A}^{\prime}$ and ${ }^{3} \mathrm{~A}^{\prime} 3.7$ and $4.3 \mathrm{kcal} / \mathrm{mol}$ higher in energy than ${ }^{3} \mathrm{~A}^{\prime}$, respectively.

In the next step, one H migrates from the Pt^{1} site to another Pt atom. Since almost all of intermediates and transition states starting from the $\mathbf{P t}_{3} \mathbf{H} \mathbf{C o m 1}$ have C_{1} symmetries, we have calculated only the energetically lowest triplet and singlet states regardless of their space symmetry. Due to the asymmetric character of $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{H}} \mathbf{C o m} 1$ with two $\left(\mathrm{Pt}^{2}-\mathrm{Pt}^{3}\right.$ and $\left.\mathrm{Pt}^{1}-\mathrm{Pt}^{3}\right)$ short and one $\left(\mathrm{Pt}^{1}-\mathrm{Pt}^{2}\right) \overline{\text { ong }}$ metal-metal bond, the migration would preferentially lead H to the Pt^{3} site via migration of H along a short bond rather than to the Pt^{2} site via migration of H along the long bond. With this in mind, we have obtained the isomerization transition state $\mathbf{P t}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{T S i 1}$ on the singlet and triplet surfaces. Although no IRC^{-}has been followed, the structure of $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{T S i 1}$, rather similar in nature to the dimer case, suggests that this TS takes $\mathbf{P t}_{3_{-}} \mathbf{H}_{-} \mathbf{C o m 1}$ to $\mathbf{P t}_{\mathbf{3}_{\mathbf{-}} \mathbf{H}_{-} \mathbf{C o m} 2 \text {. }}$ Measured from $\mathbf{P t}_{3_{-}} \mathbf{H}_{-} \mathbf{C o m 1}$, the barrier height for $\overline{\mathrm{H}}$ migration is $8.0(7.7) \mathrm{kcal} / \mathrm{mol}$ (with ZPC) on the singlet (triplet) surface, which is significantly higher than that, $1.0(2.0) \mathrm{kcal} / \mathrm{mol}$, for the dimer case. The reason is that the resultant complex for the trimer, $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$, is less stable, in contrast to the global minimum $\mathbf{P t}_{\mathbf{2}_{-}} \mathbf{H}_{-}^{-} \mathbf{C o m} 2$ for the dimer. ${ }^{11}$ In $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$, the $\mathrm{H}^{1}-\mathrm{Pt}^{1}-\mathrm{Pt}^{3}-\mathrm{H}^{2}$ part is rather similar to $\mathbf{P t}_{\mathbf{2}_{\mathbf{-}}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$, with a dihedral angle around 90°. It is interesting to note that, although Pt^{1} and Pt^{3} both have an H atom bound to them, the distances to Pt^{2} are rather different. The $\mathrm{Pt}^{1}-\mathrm{Pt}^{2}$ bond, trans to the inplane $\mathrm{H}^{1}-\mathrm{Pt}^{1}$ bond, is significantly longer than the $\mathrm{Pt}^{3}-\mathrm{Pt}^{2}$ bond, perpendicular to the $\mathrm{H}^{2}-\mathrm{Pt}^{3}$ bond. Evidently the $\mathrm{H}^{2}-$ Pt^{3} bond, orthogonal to the Pt_{3} plane, does not affect the $\mathrm{Pt}^{3}-$ Pt^{2} interaction, while the $\mathrm{Pt}^{1}-\mathrm{Pt}^{2}$ bond is weakened by the competitive interaction of the trans- H atom. These geometry changes of $\mathbf{P t}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$ are more significant for the singlet state than for the triplet.

Although the complex $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 3$, corresponding to the product of H migration along the $\overline{\mathrm{l}}$ ong bond from $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 1}$, is calculated to be energetically lower than $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{H}_{-}^{-} \mathbf{C o m} 2$, all our attempts to find the transition state connecting $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{H} \mathbf{C o m 1}$ to $\mathbf{P t}_{\mathbf{3}} \mathbf{H} \mathbf{C o m} 3$ under C_{1} symmetry converged to $\mathbf{P t}_{\mathbf{3}_{\mathbf{-}}} \mathbf{H}_{-} \mathbf{T S i 1}$. We believe that the path connecting $\mathbf{P t}_{\mathbf{3}} \mathbf{H}_{-} \overline{\mathbf{C}} \overline{\mathbf{o}} \mathbf{1}$ to $\mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{C o m} 3$ is energetically higher than $\mathbf{P t}_{3}{ }_{-} \mathbf{H}_{-}^{-} \mathbf{T S i 1}$ connecting $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 1$ with $\mathbf{P t}_{\mathbf{3}_{-} \mathbf{H}} \mathbf{H}_{\mathbf{C}} \mathbf{C o m} 2$. Therefore, the only way to reach $\overline{\mathbf{P}}_{\mathbf{3}} \mathbf{H}_{\mathbf{H}} \mathbf{C o m} 3$ appears to be the migration of the H^{2} atom from $\mathbf{P t}_{3} \mathbf{Z}_{\mathbf{-}} \mathbf{-} \mathbf{C o m} 2$ from Pt^{3} to Pt^{2} via the short $\mathrm{Pt}^{3}-$ Pt^{2} bond. The migration transition state $\mathbf{P t}_{\mathbf{3}} \mathbf{H}_{\mathbf{H}} \mathbf{T S i} 2$ has been obtained, as shown in Figure 3. The process $\overline{\mathbf{P t}_{3}} \mathbf{H} \mathbf{C o m} 2 \rightarrow$ $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m} 3$ is found to be exothermic by $10.7(4.1 \overline{)} \mathrm{kcal} / \mathrm{mol}$ (with $\overline{\mathrm{Z} P C}$) on the singlet (triplet) surface and occurs with a $1.1(1.6) \mathrm{kcal} / \mathrm{mol}$ isomerization barrier from $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m} 2$ at $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{T S i} 2$. Note that, although the two $\mathrm{H}-\mathrm{Pt}$ bonds prefer to be perpendicular in the singlet state of $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m} 3$, the most stable triplet structure has the two $\mathrm{H}-\mathrm{Pt}$ bonds trans to each other. This is exactly the same as found in the singlet and triplet $\mathbf{P t}_{\mathbf{2}_{\mathbf{2}}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2 .{ }^{11}$ Evidently, the trimer complexes still hold a character of the dimer complexes. The singlet $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 3$ is $26.6 \mathrm{kcal} / \mathrm{mol}$ below the ground-state reactants. The triplet structure of $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 3$ has similar geometries (except for a dihedral angle) and energies.

We have also obtained a few other structures that contain bridged H atoms. $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 4}$ is a symmetric structure, which resembles $\mathbf{P t}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} \mathbf{1}^{-}$in the case of the Pd trimer, except that H^{2} avoids the 3 -fold bridged site which is the consequence of low lying s orbitals for Pt. The relative orientation of the two H atoms can be either cis or trans with an energy difference between the corresponding structures cis- $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m 4}$ and trans $-\mathrm{Pt}_{3} \mathbf{H}_{-} \mathbf{C o m} 4$ of only $0.2(2.6) \mathrm{kcal} / \mathrm{mol}^{-}$for the singlet (triplet) state. The isomerization transition state, $\mathbf{P t}_{\mathbf{3}} \mathbf{H} \mathbf{H} \mathbf{T S}(c i s-$
trans), has been calculated only for the singlet state and is found to be $3.0 \mathrm{kcal} / \mathrm{mol}$ higher than the trans-isomer. The calculated imaginary frequency is only $165 \mathrm{i} \mathrm{cm}^{-1}$, which is consistent with the low barrier from either conformation. Energetically, the
 mol below the reactants, respectively. Interestingly, for $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 4}$, although the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state is rather stable, in fact more stable than the singlet, the ${ }^{3} \mathrm{~A}^{\prime}$ state is very high in energy, $\sim 20 \mathrm{kcal} / \mathrm{mol}$ and above. Going from ${ }^{3} \mathrm{~A}^{\prime \prime}$ to ${ }^{3} \mathrm{~A}^{\prime}$ involves an alteration of the orbital occupation where the $\mathrm{a}^{\prime} \mathrm{HOMO}$ in ${ }^{3} \mathrm{~A}^{\prime \prime}$ is replaced by the $\mathrm{a}^{\prime \prime}$ LUMO. Judging from the molecular orbital coefficients, we see that this change of electronic configuration involves an electronic excitation from an orbital with a large s/d component on Pt^{2} to an orbital with $\mathrm{Pt}^{1}-\mathrm{Pt}^{3}$ antibonding character, which is clearly strongly destabilizing.

The isomerization transition state between $\mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{C o m} 3$ and trans $-\mathrm{Pt}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m} 4$ has also been obtained on both the singlet and triplet electronic states, which is $\mathbf{P t}_{\mathbf{3}_{\mathbf{Z}}} \mathbf{H}_{\mathbf{-}} \mathbf{T S i} 3$ in Figure 3. The structure of $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{H}_{-} \mathbf{T S i 3}$ is more like $\overline{\mathbf{P}} \mathbf{t}_{\mathbf{3}} \mathbf{H}_{-} \mathbf{C o m} 4$ than $\mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{C o m} 3$, where $\overline{\mathrm{H}}^{1}$ is already in a rather symmetric position relative to Pt^{3} and Pt^{1}, especially in the singlet state. IRC calculations on the singlet state further verified that $\mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{T S i} 3$ actually connects $\mathbf{P t}_{3_{-}} \mathbf{H}_{-} \mathbf{C o m} 3$ and $\mathbf{P t}_{\mathbf{3}} \mathbf{H}_{-} \mathbf{C o m} 4$. The isomerization barrier is not large on either the singlet or triplet state, which is 6.8 and $1.4 \mathrm{kcal} / \mathrm{mol}$, respectively, relative to the complex $\mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{C o m} 3$.

Another structure, cis- $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{H}} \mathbf{C o m} 5$, which resembles a complex for the Pd trimer, is obtained. The geometry of cis$\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 5$ is indeed very similar to $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 2$, except that the planar constraint is energetically unfavorable here. Optimization with a planar constraint, as was done in ref 9 c , leads to a structure that has two large imaginary frequencies in irrep b_{1} and a_{2} and is $\sim 10 \mathrm{kcal} / \mathrm{mol}$ higher in energy. Clearly, the hybridization of d orbitals in the metal -H bonding for Pt is energetically important. Another difference from the case of the Pd trimer is that an isomer with one H atom below and the other above the M_{3} plane exists in the case of Pt , which is trans- $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{H}} \mathbf{C o m} 5$ in Figure 3. Searches for the similar structure in the case of the Pd trimer lead to $\mathbf{P d}_{3} \mathbf{H}_{\mathbf{H}} \mathbf{C o m 1}$. Evidently as soon as the repulsion between the two $\overline{\mathrm{H}} \overline{\mathrm{a}}$ oms is avoided by moving one H to the other side of the plane, the other H atom occupies the favorable 3 -fold bridged site and forms $\mathbf{P d}_{\mathbf{3}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 1$. Energetically, trans- $\mathbf{P t}_{\mathbf{3}}^{\mathbf{Z}} \mathbf{H} \mathbf{C o m} 5$ is 2.9 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than cis- $\mathrm{Pt}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m} \mathbf{5}$ for their singlet states. For the triplet states the trans- $\overline{\mathbf{P}} \mathbf{t}_{\mathbf{3}} \mathbf{H}_{-} \mathbf{C o m} 5$ and cis$\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 5$ complexes are close in energy. ${ }^{-}$The singlet cis$\mathbf{P t}_{3}{ }_{\mathbf{Z}}^{\mathbf{H}} \mathbf{H}_{-}^{-} \mathbf{C o m} 5$ is calculated to be 14.7 and $23.5 \mathrm{kcal} / \mathrm{mol}$ (with ZPC) below the reactants at the B3LYP/BSI and B3LYP/BSIII levels, respectively. However, the triplet states of cis$\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 5$ and trans $-\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m} 5$ have been found to be rather higher (22.9 and $19.9 \overline{\mathrm{k} c \overline{\mathrm{al}} / \mathrm{mol} \text { at the B3LYP/BSI level, }}$ respectively) in energy than their singlet states, presumably because of the change of electronic configuration involving excitation from the bridged $\mathrm{Pt}-\mathrm{H}$ bonds to the antibonding orbital of $\mathrm{Pt}^{2}-\mathrm{Pt}^{3}$. Indeed, optimization of triplet states in ${ }^{3} \mathrm{~A}^{\prime \prime}$ leads to breakage of the bridged $\mathrm{Pt}-\mathrm{H}-\mathrm{Pt}$ bond, H becomes localized on one metal atom, and the $\mathrm{Pt}^{1}-\mathrm{Pt}^{3}$ and $\mathrm{Pt}^{1}-\mathrm{Pt}^{2}$ bonds also become significantly longer.
cis- $\mathbf{P t}_{3} \mathbf{H} \mathbf{H} \mathbf{C o m 5}$ can be formed via an isomerization transition state, $\overline{\mathbf{P}}_{\mathbf{t}_{\mathbf{3}} \mathbf{H} \mathbf{H S i 4} \text {, from the cis-symmetric complex }}$ $\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m} 4$. The reaction path motion is basically migration of $\overline{\mathrm{H}}^{2}$ from Pt^{2} to Pt^{1}, as indicated by the normal mode presented in Figure 3. The barrier height is $3.2 \mathrm{kcal} / \mathrm{mol}$ on the singletstate surface. Although not studied here, a transition-state
structure of similar character is expected to connect the trans$\mathbf{P t}_{3} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 4}$ and trans- $\mathbf{P t}_{3_{-}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 5}$. Since triplet states of the complexes cis $-\mathrm{Pt}_{\mathbf{3}_{-}} \mathbf{H}_{-} \overline{\mathrm{Com}} \overline{\mathbf{5}}$ and trans- $\mathrm{Pt}_{3_{-}} \mathbf{H} \mathbf{C o m 5}$ are higher in energy than their singlet states, we expect that the transition state connecting $\mathbf{P t}_{\mathbf{3}_{-} \mathbf{H}_{-} \mathbf{C o m} 4}$ with cis- $\mathbf{P t}_{\mathbf{3}_{\mathbf{-}} \mathbf{H}_{\mathbf{-}} \mathbf{C o m 5}}$ on the triplet surface will be very high in energy and therefore was not investigated here.
Summarizing the complicated potential energy profile, the mechanism of $\mathrm{H}-\mathrm{H}$ activation on Pt_{3} is shown in Figure 6. Compared with the case of $\mathrm{Pt}_{2}-\mathrm{H}_{2},{ }^{11}$ the initial steps of $\mathrm{H}-\mathrm{H}$ activation from the molecular complex $\mathbf{P t}_{n_{-}} \mathbf{H}_{-} \mathbf{M o l}(n=2,3)$ to $\mathbf{P t}_{n_{-}} \mathbf{H}_{\mathbf{C}} \mathbf{C o m} \mathbf{2}$ are rather similar, although the energetics differ a little. Due to the existence of the third Pt atom, the H atom can migrate further from $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{H}_{-} \mathbf{C o m} \mathbf{2}$ and form various more stable complexes. On both the singlet- and the triplet-state surfaces, both Pt_{2} and Pt_{3} can activate the $\mathrm{H}-\mathrm{H}$ bond without barrier. However, the ground state of Pt_{2} is triplet with the singlet state around $10 \mathrm{kcal} / \mathrm{mol}$ higher in energy, while in the case of Pt_{3}, the ${ }^{1} \mathrm{~A}_{1}$ state has been obtained as the ground state. Therefore, the singlet products of $\mathrm{H}-\mathrm{H}$ activation are expected to be formed more efficiently on Pt_{3} than on Pt_{2}.
$\mathbf{P t}_{3}+\mathbf{C H}_{4}$. Finally, we discuss the mechanism of $\mathrm{C}-\mathrm{H}$ bond activation in CH_{4} on Pt_{3}. According to our experience in the comparison of $\mathrm{Pt}_{2}-\mathrm{H}_{2}$ and $\mathrm{Pt}_{2}-\mathrm{CH}_{4}$, we expect a mechanism for the $\mathrm{C}-\mathrm{H}$ bond activation similar to that for the $\mathrm{H}-\mathrm{H}$ activation. Indeed, the optimized structures from $\mathbf{P t}_{3} \mathbf{C H}_{3} \mathbf{T S a}$ to $\mathbf{P t}_{\mathbf{3}} \mathbf{C H}_{\mathbf{3}} \mathbf{C} \mathbf{C o m 4}$ in Figure 4 are very similar in geometry to the corresponding ones in the $\mathrm{H}-\mathrm{H}$ activation process discussed above. Since CH_{3} favors a directional bond over a bridged interaction, no structure resembling $\mathbf{P t}_{3_{-}} \mathbf{H}$ _Com5 has been obtained. Another important difference between H_{2} and CH_{4} systems is the lack of molecular complex in CH_{4}. The potential energy profiles in Figure 6 suggest that CH_{4} molecular complex is likely to be energetically unstable relative to $\mathrm{Pt}_{3}+\mathrm{CH}_{4}$ and does not exist.
Since the structures in the $\mathrm{H}_{3} \mathrm{C}-\mathrm{H}$ activation are very similar in character to those in the $\mathrm{H}-\mathrm{H}$ activation, we shall concentrate on the energetics in the following discussion. Similar to the case of $\mathrm{Pt}_{2}-\mathrm{H}_{2} / \mathrm{CH}_{4}$, as seen in Figure 6, the energies of the structures in the $\mathrm{Pt}_{3}-\mathrm{CH}_{4}$ system are consistently higher than those in the $\mathrm{H}-\mathrm{H}$ activation processes by $15-20 \mathrm{kcal} /$ mol, which comes from the weaker $\mathrm{Pt}-\mathrm{CH}_{3}$ bonding energy relative to that of $\mathrm{Pt}-\mathrm{H}$, approximately $17-18 \mathrm{kcal} / \mathrm{mol}$ obtained from the monomer calculations. Indeed, the relative stabilities among $\mathbf{P t}_{3_{-}} \mathbf{X} \mathbf{C o m 1} 1, \mathbf{P t}_{3_{-}} \mathbf{X} \mathbf{C o m} 2$, and $\mathbf{P t}_{\mathbf{3}_{-}} \mathbf{X}$ _Com3 as well as the isomerization barriers between them are very similar in the cases of $\mathrm{X}=\mathrm{H}$ and $\mathrm{X}=\mathrm{CH}_{3}$, especially on the singlet-state surface.
An interesting result from the current study is that the barrier height for $\mathrm{C}-\mathrm{H}$ activation is much lower in Pt_{3} than in Pt_{2} measured from the corresponding ground-state reactants. To be more specific, on the singlet-state surface, $\mathbf{P t}_{3_{-}} \mathbf{C H}_{3} \mathbf{T S a}$ is only $1.1 \mathrm{kcal} / \mathrm{mol}$ above the reactants, while $\mathbf{P t}_{2}{ }_{-} \mathbf{C H}_{3}{ }_{\mathbf{-}}{ }^{\mathbf{T}} \mathbf{~} \mathbf{S a}$ is $10.7 \mathrm{kcal} / \mathrm{mol}$ above the triplet ground-state reactants. ${ }^{1 \overline{1}}$ Similarly, the triplet state $\mathbf{P t}_{3} \mathbf{C H}_{3} \mathbf{T S a}$ is $0.4 \mathrm{kcal} / \mathrm{mol}$ below the reactants, while $\mathbf{P t}_{2} \mathbf{C H}_{3}-\mathbf{T S a}$ is $2.6 \mathrm{kcal} / \mathrm{mol}$ above the groundstate reactants. ${ }^{11} \overline{\text { Note }} \overline{\text { that, }}$, since the reactions take place in the gas phase, the rate-determining factor here is the energy of the barrier relative to the reactants, and the stability of the weakly bound molecular complex is not of much relevance. In addition, the ground state of Pt_{2} is triplet, while that of Pt_{3} is singlet although very close in energy to several triplet states. Therefore the activation of CH_{4} on the singlet state of Pt_{2} has to involve an intersystem crossing step, either before the
activation transition state on the singlet state or after overcoming the activation transition state on the triplet surface. In any event, our studies suggest that Pt_{3} should exhibit a faster $\mathrm{C}-\mathrm{H}$ activation rate compared to Pt_{2} on both the singlet and the triplet state, which is consonant with the experimental measurements of Cox et al. ${ }^{12}$ that the rate constants of CH_{4} activation on Pt_{3} and Pt_{2} are 2.6 and 2.4, respectively, normalized with respect to that of Pt_{7}.

To rationalize the results we have obtained on the activation barrier height, we have calculated the vertical ionization potential (IP) and electronic affinity of the Pt_{2} and Pt_{3} cluster relative to their ground electronic state. A smaller ionization potential implies a stronger electron donation capability, while a larger electron affinity implies a better ability of accepting electron from the incoming molecule. At the B3LYP/I level, the IP of the triplet Pt dimer is calculated to be 10.08 eV , while that of ground singlet state Pt trimer is as small as 8.18 eV . As to the electron affinity, it is 1.90 eV for Pt_{2} and 2.09 eV for Pt_{3}. Therefore, Pt_{3}, compared with Pt_{2}, can more strongly back donate an electron into the antibonding orbital of the molecule to be activated and can also accept more easily the electron donation from the molecule. All these suggest a lower activation barrier and therefore an easier activation process for Pt_{3}. Moreover, these findings also rationalize our results that the molecular complex between H_{2} and $\mathrm{Pt}_{3}, \mathbf{P t}_{3} \mathbf{H}_{-} \mathbf{M o l}$, is much more stable (by nearly $10 \mathrm{kcal} / \mathrm{mol}$) than the - corresponding structure, $\mathbf{P t}_{\mathbf{2}} \mathbf{H} \mathbf{H} \mathbf{M o l}$.

IV. Conclusions

In the current series of studies, we have made the first step toward the understanding of size dependence of the reactivities of small metal clusters. In particular, the electronic structures of $\mathrm{Pt} / \mathrm{Pd}$ trimers and the detailed reaction mechanisms of $\mathrm{H}_{2} /$ CH_{4} activation on these clusters have been investigated at the B3LYP level of theory. The main findings from the current study can be summarized as the following.

In the $\mathrm{Pd}_{3}+\mathrm{H}_{2} / \mathrm{CH}_{4}$ system, Pd_{3} can activate H_{2} without barrier as Pd_{2} can. For the activation of $\mathrm{C}-\mathrm{H}$ bond in CH_{4} with Pd_{3}, although the final products are similar in energy compared to the case of Pd_{2}, the activation barriers in Pd_{3} are much higher than those in Pd_{2}, which is in line with the experimental findings of Cox et al. ${ }^{13}$ This difference is explained in terms of the larger repulsion from the $\mathrm{s}^{1} \mathrm{~d}^{9}$ configurations of Pd atoms in Pd_{3}, whereas Pd atoms in Pd_{2} adopt mainly the d^{10} configuration with smaller repulsion.

As to the system of $\mathrm{Pt}_{3}+\mathrm{H}_{2} / \mathrm{CH}_{4}$, the reactions basically follow the same pattern as in Pt_{2}; namely, $\mathrm{H}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bonds break at first on one Pt atom and then one H atom migrates to other Pt atom(s). No activation barrier has been found on either the singlet or the triplet state for $\mathrm{H}-\mathrm{H}$ activation, and a smaller activation barrier compared to the Pt_{2} case has been obtained for the $\mathrm{C}-\mathrm{H}$ activation. Therefore, our results support the experimental finding that Pt_{3} activates CH_{4} with a higher rate than Pt_{2}. This effect has been rationalized with the lower IP and higher EA of Pt_{3} compared to Pt_{2}.

Obviously, the current work is just the first step toward the understanding of the size dependency of cluster properties. More work has to be done on clusters of larger sizes and, more importantly, on extraction and generalization of patterns and rules in their reactivities. We believe that with further computations and more careful analysis the secret of sizedependent effects of metal clusters will be revealed in the near future.

Acknowledgment. The use of computational facilities and programs at the Emerson Center is acknowledged. The present research is in part supported by a grant (CHE-9627775) from the National Science Foundation. The Phillips Petroleum Co. Graduate Fellowship to Q.C. is acknowledged.

References and Notes

(1) See, for example: (a) Castleman, A. W., Jr.; Bowen, K. H., Jr. J. Phys. Chem. 1996, 100, 12911. (b) Bacic, Z.; Miller, R. E. J. Phys. Chem. 1996, 100, 12945.
(2) See, for example: (a) In Atomic and Molecular Beam Methods; Scoles, G., Bassi, D., Buck, U., Laine, D., Eds.; Oxford University Press: Oxford, 1988. (b) Chemical Reactions in Clusters; Berstein, E. R., Ed.; Oxford University Press: New York, 1996. (c) Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms; Haberland, H., Ed.; Springer-Verlag: New York, 1994.
(3) See, for example: Ber. Bunsen-Ges. Phys. Chem. 1992, 96 (6).
(4) (a) Jiao, C. Q.; Freiser, B. S. J. Phys. Chem. 1995, 99, 10723. (b) Berg, C.; Schindler, T.; Lammers, A.; Niedner-Schatteburg, G.; Bondybey, V. E. J. Phys. Chem. 1995, 99, 15497.
(5) Guo, B. C.; Kerns, K. P.; Castleman, A. W., Jr. J. Phys. Chem. 1992, 96, 6931.
(6) (a) Schnabel, P.; Irion, M. P. Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 1101. (b) Irion, M. P.; Schnabel, P. Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 1091. (c) Lian, L.; Su, C.-X.; Armentrout, P. B. J. Chem. Phys. 1992, 97, 4072.
(7) (a) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1992, 96, 5783. (b) Estiu, G. L.; Zerner, M. C. J. Phys. Chem. 1994, 98, 4793.
(8) Wang, H.; Carter, E. A. J. Phys. Chem. 1992, 96, 1197.
(9) (a) Nakatsuji, H.; Matsuzaki, Y.; Yonezawa, T. J. Chem. Phys. 1988, 88, 5759. (b) Balasubramanian, K. J. Chem. Phys. 1991, 94, 1253. (c). Dai, D.; Liao, D. W.; Balasubramanian, K. J. Chem. Phys. 1995, 102, 7530. (d) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1995, 103, 648.
(10) (a) Nakao, T.; Dixon, D. A.; Chen, H. J. Phys. Chem. 1993, 97, 12665. (b) Harada, M.; Dexpert, H. J. Phys. Chem. 1996, 100, 565. (c) Valerio, G.; Toulhoat, H. J. Phys. Chem. 1996, 100, 10827. (d) Valerio, G.; Toulhoat, H. J. Phys. Chem. 1997, 101, 1969. (e) Goursot, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 7452. (f) Seminario, J. M.; Concha, M. C.; Politzer, P. Int. J. Quantum Chem. Symp. 1993, 27, 263.
(11) Cui, Q.; Musaev, D. G.; Morokuma, K. J. Chem. Phys. 1998, 108, 8418.
(12) Trevor, D. J.; Cox, D. M.; Kaldor, A. J. Am. Chem. Soc. 1990, 112, 3742.
(13) Fayet, P.; Kaldor, A.; Cox, D. M. J. Chem. Phys. 1990, 92, 254.
(14) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(15) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(16) (a) Dunning, T. M., Jr. J. Chem. Phys. 1971, 55, 716. (b) Dunning, T. M., Jr. J. Chem. Phys. 1970, 53, 2823.
(17) Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
(18) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77,123.
(19) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(20) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J. B.; Stefanov, B.; Nanayakkara, A.; Challacombe, M.: Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision D.3; Gaussian, Inc.: Pittsburgh, PA, 1995. (b) Cui, Q.; Musaev, D. G.; Svensson, M.; Morokuma, K. J. Phys. Chem. 1996, 100, 10936.
(21) For DFT in transition metal systems, see for example: (a) Bauschilicher, C. W.; Langhoff, S. R.; Partridge, H. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific: London, 1995. (b) Siegbahn, P. E. M. Adv. Chem. Phys. 1997, 93, 333. (c) Ziegler, T. Chem. Rev. 1991, 91, 651. (d) Salahub, D. R.; Castro, M.; Fourinier, R.; Calaminici, P.; Godbout, N.; Goursot A.; Jamorski, C.; Kobayashi, J.; Martinez, A.; Papai, I.; Proynov, E.; Russo, N.; Sirois, S.; Ushio, J.; Vela, A. In Theoretical and Computational Approaches to Interface Phenomena; Sellers, H., Olab, J., Eds.; Plenum Press: New York, 1995; p 187.
(22) (a) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1997, 16, 1355. (b) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 742. (c) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 1383.
(23) Rubio, J.; Zurita, S.; Barthelat, J. C.; Illas, F. Chem. Phys. Lett. 1994, 217, 283.
(24) (a) Gropen, O.; Almlof, J. Chem. Phys. Lett. 1992, 191, 306. (b) Nygren, M. A.; Siegbahn, P. E. M.; Wahlgren, U.; Akeby, H. J. Phys. Chem. 1992, 96, 3633.
(25) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1995, 103, 648.
(26) Balasubramanian, K. J. Chem. Phys. 1989, 91, 307.

[^0]: ${ }^{a}$ Total energies for $\mathrm{X}-\mathrm{H}\left(\mathrm{X}=\mathrm{H}\right.$ and $\left.\mathrm{CH}_{3}\right)$ are shown in hartrees. For other structures, the energetics in $\mathrm{kcal} / \mathrm{mol}$, relative to $\mathrm{HX}+$ ground electronic state M_{3}, is shown. Numbers before slash are calculated without ZPC, while the numbers after slash includes the ZPC. The unscaled ZPC calculated at the B3LYP/I level is used for all the calculations. ${ }^{b}$ The electronic-state label without parentheses is for $\mathrm{X}=\mathrm{H}$, and the one in parentheses is for $\mathrm{X}=\mathrm{CH}_{3}$.
 CH_{4} is summarized in Table 1-3. The orbital diagrams of Pd_{3} and Pt_{3} are presented in Figure 1, while the geometries of important intermediates and transition states are given in Figure $2-4$. Schematic reaction profiles for the $\mathrm{H}_{2} / \mathrm{CH}_{4}$ activation on Pd_{3} and Pt_{3} are shown in Figure 5 and 6, respectively. As to notations, "Com" denotes that the structure is an intermediate in the reaction, "TSi" denotes "transition state for isomerization", and "TSa" denotes "transition state for activation".

 ## A. Properties and Reactivities of the Metal Dimers from

 Previous Study. It is well documented that the B3LYP method gives reliable properties, in particular, geometries and vibrational frequencies for extensive classes of chemical systems including transition metals. ${ }^{21}$ For most systems, especially the secondand third-row transitional metals, good energetics are also obtained when decent basis sets are employed. Particularly for the $\mathrm{Pt} / \mathrm{Pd}$ systems, ${ }^{22}$ it has been found in our previous study ${ }^{11}$